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Abstract
Problems posed by semirelativistic Hamiltonians of the form H =

√
m2 + p2 +

V (r) are studied. It is shown that energy upper bounds can be constructed
in terms of certain related Schrödinger operators; these bounds include free
parameters which can be chosen optimally.

PACS number: 03.65.Ge

1. Introduction

We study semirelativistic Hamiltonians H composed of the relativistically correct expression
K(p2) =

√
m2 + p2, p ≡ |p|, for the energy of a free-particle of mass m and momentum p,

and of a coordinate-dependent static interaction potential V (r), r ≡ |r|, which may be chosen
arbitrarily, apart from the constraint imposed on H that it be bounded from below:

H =
√

m2 + p2 + V (r). (1.1)

The eigenvalue equation generated by this kind of Hamiltonian is usually called the spinless
Salpeter equation. It arises as a well-defined approximation to the Bethe–Salpeter formalism
for the description of bound states within (relativistic) quantum field theory [1] when it
is assumed that the bound-state constituents interact instantaneously and propagate like
free particles [2]. At the same time, H may be regarded as the simplest and perhaps
most straightforward generalization of a (nonrelativistic) Schrödinger operator towards the
incorporation of relativistic kinematics. For many potentials, this Hamiltonian can be
shown [3] to be bounded below and essentially self-adjoint and its spectrum can be defined
variationally. For definiteness, we consider the corresponding eigenvalue problem in three
spatial dimensions.
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In section 2, we review the well-known tangential Schrödinger upper bounds which may
be found [4–6] either by use of optimized operator inequalities or by the exploitation of the
concavity of the Salpeter kinetic-energy K as a function of p2. The new Schrödinger bounds
which are the principal concern of this paper are derived by considering operator differences.
We shall now illustrate the main idea by considering a nonrelativistic example. Suppose we
wish to estimate the bottom of the spectrum of

H = p2 + αr4 − βr2 = H1 − H2, (1.2)

where α and β are positive and

H1 = (1 + ω)p2 + αr4, and H2 = ωp2 + βr2, ω > 0. (1.3)

Since H1 = H + H2, we conclude from the theorem of Weyl [7–9] that E1 � E + E2. We
note in passing that for the ground-state energies discussed here, the Weyl inequality follows
immediately by applying the exact normalized wavefunction ψ1 corresponding to H1 as a trial
function for the terms of the sum. Thus we have

E1 = 〈ψ1,H1ψ1〉 = 〈ψ1,Hψ1〉 + 〈ψ1,H2ψ1〉 � E + E2. (1.4)

Of course, we assume that the operator domains allow this. It remains to optimize the
expression for E with respect to ω > 0. Thus we find in the example

E � min
ω

[E1(ω) − E2(ω)] = min
ω

[e4((1 + ω)2α)1/3 − e2(ωβ)1/2], (1.5)

where in three dimensions we have for the respective spectral bottoms

p2 + r4 → E = e4 ≈ 3.799 673, and p2 + r2 → E = e2 = 3. (1.6)

The coupling dependence is found by the general scaling law

p2 + v sgn(q)rq → E(v) = E(1) v2/(2+q) (1.7)

for pure powers 0 �= q > −2. For our problem and the special case α = β = 1, we find the
result

2.834 5362 ≈ E < Eu = 2.855 25 for ω = 0.818 584. (1.8)

By this reasoning we determine the energy of H = p2 + r4 − r2 with error less than 0.74%.

In section 3 we shall show how this idea can be applied to the Salpeter eigenvalue problem.

2. Tangential Schrödinger upper bounds

The kinetic-energy term K(p2) =
√

m2 + p2 in the Hamiltonian H = K + V is a concave
function of p2. Thus tangents to K generate upper Schrödinger operators H(t) of the form

H � H(t) = a(t)p2 + b(t) + V (r), (2.1)

where t > 0 is the point of contact between the tangent ap2 + b and K(p2). Elementary
analysis allows us to obtain the following formulae for the coefficients a(t) and b(t)

a(t) = 1

2
√

m2 + t
, b(t) = 2m2 + t

2
√

m2 + t
. (2.2)

If an eigenvalue of the Schrödinger operator ap2 + V (r) is given by E(a), then we have by the
variational characterization of the discrete spectrum of H that the corresponding eigenvalue
E of H is bounded by the inequality

E � min
t>0

[E(a(t)) + b(t)]. (2.3)
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The minimum in this expression simply picks out the energy of the best upper tangential
operator. We have shown earlier [4] that these ‘envelope bounds’ are identical to those obtained
by optimizing over the parameter µ in the upper bound for K(t) implied by the inequality
‖K(t) − µ‖2 � 0, namely K � (K2 + µ2)/(2µ); the link between the two expressions for
the bound is the parameter relation µ =

√
m2 + t .

The advantage of the tangential bound is its generality: it applies to each discrete
eigenvalue that exists for the upper operator. For later comparison we consider three examples.
We restrict our attention to the lowest eigenvalue, which is the subject of the difference upper
bound discussed in section 3 below.

2.1. The ultrarelativistic harmonic oscillator H = p + r2 (m = 0)

By the spectral equivalence H ≡ H̃ = p2 + r, we see that the exact energy is given by −z0,
where z0 is the first zero of Airy’s function Ai(z). That is to say E ≈ 2.338 1074. In order to
compute the envelope bound we may re-parametrize (2.2) in terms of s = a = 1/(2

√
t) and

find b = 1/(4s). The tangential Hamiltonian then becomes H = sp2 + 1/(4s)+ r2. The lowest
eigenvalue of this operator is then given by E(s) = 3

√
s + 1/(4s). If we minimize E(s) with

respect to s we find E � (9/2)6− 1
3 ≈ 2.476 44. This is about 5.9% high.

2.2. The semirelativistic harmonic oscillator H =
√

1 + p2 + r2 (m = 1)

In this case the Hamiltonian H is equivalent to the Schrödinger operator H̃ = p2 +
√

1 + r2

whose exact energy E is straightforward to find numerically and is given by E ≈ 2.664 0196.

Meanwhile the tangential operator is given by H = ap2 + b + r2 and has lowest energy
E(t) = 3

√
a(t) + b(t), where a(t) and b(t) are given by the formulae (2.2). A minimization

of E(t) with respect to t yields the best upper bound E � E(3) = 11/4. This bound is about
3.2% high. As m is increased in the operator H =

√
m2 + p2 + r2, the problem spectrally

(and monotonically) approaches the Schrödinger limit H = m + p2/(2m) + r2, for which the
envelope approximation is exact.

2.3. The ultrarelativistic linear potential H = p + r (m = 0)

This very symmetrical operator is truely non-local but yields easily to a variational treatment
in a Hermite basis of the form φ(r) = exp

(− 1
2 r2

) ∑
i ciH4i+1(r). In such a basis, each term

is form invariant with respect to transformations to momentum space. The Hamiltonian H

has earlier been studied by Boukraa and Basdevant [10] with the aid of special methods for
solving problems in momentum space. Thus we know that the bottom of the spectrum of H

to four places is E = 2.2322. By use of the tangential bound we obtain an upper family of
operators of the form H = sp2 + 1/(4s) + r. The corresponding lowest eigenvalue is given by
E(s) = s

1
3 (−z0) + 1/(4s), where Ai(z0) = 0, and z0 ≈ −2.338 1074. By minimizing over s

we find the best upper bound to be E � (4/3)(3|z0|3/4)
1
4 ≈ 2.3461, that is to say, about 5.1%

high.
We shall return to these examples in section 4 and find sharper upper estimates.

3. Difference Schrödinger upper bounds

The upper bound we shall discuss was discovered in connection with our studies of the
semirelativistic many-body problem. For the 1-particle case the bound is most easily
constructed by means of the following defining equations:
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H =
√

m2 + p2 + V (r) = H1 − H2, (3.1)

where

H1 =
√

m2 + p2 + ap2 + br2 ≡ H̃ 1 = bp2 +
√

m2 + r2 + ar2,

H2 = ap2 + br2 − V (r),
(3.2)

and the parameters a and b are positive. We shall assume that the harmonic oscillator potential
br2 dominates the potential V (r) for large r . In this case the operators H̃ 1 and H2 are
both Schrödinger operators whose spectral bottoms we write respectively as E1(a, b) and
E2(a, b). These energies can of course be found equivalently from eigenproblems expressed
in coordinate or momentum space. We let E be the bottom of the spectrum of H and we
express the relation between the Hamiltonian operators in the form

H1 = H + H2. (3.3)

It is clear by an elementary variational argument applied to (3.3) that we can conclude the
Weyl energy inequality [7–9]

E1(a, b) � E + E2(a, b). (3.4)

By re-writing (3.4) and optimizing with respect to the free positive parameters a and b, we
find that our best such difference upper bound to E is given by

E � Eu = min
{a, b}

[E1(a, b) − E2(a, b)]. (3.5a)

By adding and subtracting the oscillator ap2 + br2 in the reverse way we arrive, by exactly
similar reasoning, at an alternative difference upper-bound formula given by

E � E(−)
u = min

{a, b}
[
E

(−)
2 (a, b) − E

(−)
1 (a, b)

]
, (3.5b)

where the corresponding operators H
(−)
1 and H

(−)
2 are defined by

H
(−)
1 = −

√
m2 + p2 + ap2 + br2 ≡ H̃

(−)
1 = bp2 −

√
m2 + r2 + ar2,

H
(−)
2 = ap2 + br2 + V (r).

(3.6)

Equations (3.5a) and (3.5b) summarize the principal results of this paper.

4. Examples

We now consider the three problems mentioned in section 2. In each case we must solve
the corresponding Schrödinger problems, H1 and H2, defined in (3.2), and then minimize
the corresponding eigenvalue difference E1(a, b) − E2(a, b) with respect to the parameters a

and b.

4.1. The ultrarelativistic harmonic oscillator H = p + r2 (m = 0)

The corresponding pair of Schrödinger operators given by (3.2) become

H̃ 1 = bp2 + ar2 + r, H2 = ap2 + (b − 1)r2. (4.1)

We find from (3.5a)

2.338 1074 ≈ E < 2.3433 = 5.634 56 − 3.291 26 (a = 0.59, b = 3.04). (4.2)
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4.2. The semirelativistic harmonic oscillator H =
√

1 + p2 + r2 (m = 1)

The corresponding pair of Schrödinger operators are

H̃ 1 = bp2 + ar2 +
√

1 + r2, H2 = ap2 + (b − 1)r2. (4.3)

From (3.5a) we find

2.664 0167 ≈ E < 2.6689 = 6.334 18 − 3.665 28 (a = 0.59, b = 3.53). (4.4)

4.3. The ultrarelativistic linear potential H = p + r (m = 0)

The corresponding pair of Schrödinger operators are given by

H̃ 1 = bp2 + ar2 + r, H2 = ap2 + br2 − r. (4.5)

We can derive the best upper bound provided by equation (3.5) analytically in this case. We
find

E � Eu = lim
a→∞[E1(a, a) − E2(a, a)] = (φ, 2rφ)

(φ, φ)
= 4√

π
≈ 2.256 76, (4.6)

where φ(r) = exp
(− 1

2 r2
)
. We can see this by the following argument. If we let the bottom of

the spectrum of the perturbed oscillator p2 + r2 + λr be e(λ), and we write a = s4 and b = t4,

then by scaling arguments we obtain the equation

E1(a, b) − E2(a, b) = s2t2[e(1/(s3t)) − e(−1/(t3s))]. (4.7)

This expression provides an upper bound for every choice of s and t. The difference will be
small when both the expressions for λ are small, that is to say, when s and t are large. In the
limit of small λ, we know by perturbation theory that the approximation e(λ) ≈ 3 + (2/

√
π)λ

is asymptotically exact. Thus we find in this small-λ limit that

E1(a, b) − E2(a, b) ≈ 2√
π

(
t

s
+

s

t

)
� 4√

π
. (4.8)

The minimum implies that s = t, and the small-λ limit implies that s → ∞. Thus the best
upper bound provided by the smallest spectral difference is given by the right-hand side of
(4.8), as claimed above.

It is evident that the difference upper bound leads to more accurate results for these
problems than does the envelope upper bound. We note that the bounds provided by the
alternative difference inequality (3.5b) are very similar in numerical quality.

5. Conclusion

The main attraction of the Salpeter Hamiltonian H =
√

m2 + p2 + V (r) is that it captures
some relativistic features whilst remaining a relatively simple operator. By simple we mean
that for many potentials, its spectrum can be defined variationally. Thus it is in principle
straightforward to find energy upper bounds by exploring a finite-dimensional trial space. The
main technical difficulty concerning the Hamiltonian is that, apart from the harmonic oscillator
V (r) = r2, the Hamiltonian is in general non-local. In the present paper we explore a new
class of Schrödinger operator differences that provide upper bounds. The ultrarelativistic
linear problem H = p + r shows that in some cases we may expect to obtain analytical results
from these bounds.
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